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SUMMARY

During dendritic solidification liquid flow is induced both by buoyancy forces and

solidification shrinkage. Based largely on the experimental base of other NASA-

sponsored investigators, there is strong evidence that the major reason for the liquid flow

is the former, i.e., thermosolutal convection. In the microgravity environment, it is

thought that the thermosolutal convection will be greatly diminished so that convection

will be confined mainly to the flow of interdendritic liquid required to satisfy the

solidification shrinkage.

The major motivation for this work has been to provide improved models to the

NASA community involved in performing and planning space experiments on dendritic

solidification with emphasis on convection and macrosegregation. Another motivation

for this work is that macrosegregation is an extremely impol:tant subject to the

commercial casting community. We believe that work of this type, especially when

combined with the experimental results of other NASA-sponsored investigators, will be

crucially important in providing a basic understanding of macrosegregation to the casting

community.

This report describes the simulation of thermosolutal convection in directionally

solidified (DS) alloys. A linear stability analysis was used to predict marginal stability

curves for a system that comprises a mushy zone underlying an all-liquid zone. In the

unperturbed and nonconvecting state (i.e., the basic state), isotherms and isoconcentrates



are planar and horizontal. The mushy zone is realistically treated as a medium with a

variable volume fraction of liquid that is consistent with the energy and solute

conservation equations. The perturbed variables include temperature, concentration of

solute, and both components of velocity in a two-dimensional system. As a model

system, an alloy of Pb-20 wt pct Sn, solidifying at a velocity of 2 x 10-3 cm. S"1, was

selected. Dimensional numerical calculations were done to define the marginal stability

curves in terms of the thermal gradient at the dendrite tips, GL, vs the horizontal wave

number of the perturbed quantities. For a gravitational constant of 0.01 go -<g -<go,

(go = 9.8 cm-s'2), the marginal stability curve,; show no minima; thus, the system is never

unconditionally stable. Nevertheless, such calculations quantify the effect of reducing the

gravitational constant on reducing convection and suggest lateral dimensions of the mold

for the purpose of suppressing convection. Finally, for a gravitational constant of 10-4 go,

calculations show that the system is stable for the thermal gradients investigated

(2.5 _<G/. _<100 K. cm-l).

The supercritical thermosolutal convection in directionally solidified dendritic

alloys was also modeled. The model assumes a nonconvective initial state with planar

and horizontal isotherms and isococentrates that move upward at a constant

solidification velocity. The initial state is perturbed, nonlinear calculations are

performed to model convection of the liquid when the system is unstable, and the results

are compared with the predictions of a linear stability analysis. The mushy zone is

modeled as a porous medium of variable porosity, consistent with the volume fraction of

interdendritic liquid that satisfies the conservation equations of energy and solute

concentrations. Results are presented for systems involving lead-tin alloys (Pb-10 wt pct
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Sn and Pb-20 wt pct Sn) and show significant differences with results of plane-front

solidification. The calculations show that convection in the mushy zone is mainly driven

by convection in the all-liquid region, and convection of the interdendritic liquid is only

significant in the upper 20 pct of the mushy zone if it is significant at all. The calculated

results also show that the systems are stable at reduced gravity levels of the order of

104 go or when the lateral dimensions of the container are small enough, for stable

temperature gradients between 2.5 _< G L <_ 100 K. cm -1 at solidification velocities of 2 to

8 cm. h 1.

The linear stability analyses and the calculations of the nonlinear thermosolutal

convection can be used to study the dendritic solidification. In addition to those tasks,

this report briefly describes analysis and experiments on thermal and salt-finger

convection in systems comprising a fluid layer overlying a porous medium. Finally, the

aspect of solute redistribution during dendritic solidification was extended in a model to

predict the formation of microporosity. Lacking data pertaining to the solidification of

alloys, methods to estimate necessary transport and thermodynamic properties were also

developed.
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I. INTRODUCTION

The convection of interdendritic liquid in the solid plus liquid region of solidifying

alloys is responsible for many types of macrosegregation in castings and ingots. The

modeling of such convection and of the resulting macrosegregation has been the subject

of many studies since about 1970. However, there are still some important aspects of

convective phenomena that have not yet been incorporated into dendritic solidification

theory. In this report, we tie together some fundamental aspects of dendritic

solidification and of convection in order to model macrosegregation.

The susceptibility of cast alloys to macrosegregation is dealt with on a day-to-day

basis by foundrymen, ingot-makers and continuous casting engineers alike. For the most

part, the approach to solving macrosegregation problems is to evaluate a number of full-

scale production runs to determine acceptable processing parameters for each new alloy.

While segregation is sometimes reduced by these empirical methods, it usually persists,

and often is found to reach unacceptable levels leading to expensive scrap. In many

processes, macrosegregation in castings, ingots or billets is the overriding factor in

limiting the size and production rate of the cast product.

In terms of applications, this report addresses the solidification of directionally

solidified (DS) castings under conditions in which thermosolutal convection is important.

During the grant period, we did both linear and nonlinear calculations to predict the

conditions for the onset of convective instability and to predict the transient nature of

the convection during the solidification of dendritic alloys.

Such numerical research can be used in support of NASA experiments designed to

investigate convective phenomena and macrosegregation in dendritic alloys. In addition



to providing an analytical model for the dendritic solidification experiments,numerical

models for solidification can be used to explore the effect of different orientations of the

gravity vector on convection and macrosegregationin dendritically solidified alloys in the

low-g environment.

II. MACROSEGREGATION AND THERMOSOLUTAL CONVECTION

A. Early Analyses of Macrosegregation

In the early works, t1171emphasis was on the description of solute redistribution,

including convection of the interdendritic liquid, and macrosegregation; however,

thermosolutal convection in the liquid was ignored. It was recognized that because of

constitutional and thermal effects, the density of the interdendritic liquid varies, spatially

and temporally within the mushy zone, so convection of the interdehdritic liquid was

predicted and calculated. The first model which included gravity-driven convection of

interdendritic liquid was done by Mehrabian et al. in 1970:51 That basic approach, with
v

physical and numerical improvements, was subsequently used to model and study

macrosegregation in cylindrical remelted ingots, [7"9'11"13'L_|under thermal cpndjtions in

which the width of the mushy zone varied t1°'141and for multicomponent alloys, t_°'121 But

in all cases thermosolutal convection was neglected.

An example of the quantitative results obtained from one of the early studies is

shown in Figure 1 in which the convection is relatively extensive. Figure la shows the

positions and shapes of the liquidus and solidus isotherms in a cylindrical ingot. Because

the isotherms are concave with respect to the all-liquid region, convection is downward

and toward the center where the streamlines meet and then point upward (Figure lb).
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actual ingot.

was ignored.

The solute-rich interdendritic liquid flows to the center; consequently macrosegregation

is strongly positive (i.e., enriched in solute) at that location (Figure lc). In Fig. lb the

streamlines, of course, do not terminate along the surface of the liquidus isotherm in an

In the analysis used at the time (1977), convection in the all-liquid zone

Pressure on the liquidus surface was simply given as ambient pressure plus

the metallostatic pressure, and this was used as a boundary condition for the pressure

and velocity fields within the mushy zone, itself. Darcy's law was used to represent

conservation of momentum in the mushy zone. This treatment is sufficient to describe

macrosegregation when thermosolutal convection is not important and when the

geometry of the mushy zone is prescribed.

Figure 1 is an example in which the segregation is in the form of a continuous

variation in composition from surface-to-cenfer. Another important manifestation of

flow of interdendritic liquid is the formation of severe localized segregates, which are

called "channel-segregates" or "freckles". Freckles were shown (by experiment and by

calculation) to form when the solidification rate is relatively slow and the interdendritic

liquid flows in the same direction as and faster than the isotherms. This causes a local

remelting within the S/L zone and the formation of the channel-type segregates. [7"1°'15'161

B. Thermosolutal Convection

We emphasize that this reports deals with dendritic alloys. However, practically all

of the published work pertaining to the analysis of thermosolutal convection in solidifying

metals deals with "plane-front" processes in which the solid-liquid interface is nominally

fiat. Thus is terms of applications, the available literature is pertinent to crystal growing.
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Nevertheless,as a starting point to this discussion, reference is made to this body of

literature.

It is well known that during the plane front solidification of a binary alloy

convective as well as morphological instabilities can set in due to thermosolutal

effects. [18,191The problem of morphological instability (in the absence of convection) was

first considered by Tillers et al. t2°l and later by Mullins and Sekerka. [211 It is further

known that the morphologically unstable plane front may later evolve into a dendritic

network. [22241 The evolution of the morphologically unstable solidifying front into

primary dendrites is qualitatively understood. However, the precise development of the

dendritic network is still being actively investigated.

In addition to the morphological instability a convective instability has been shown

to occur during crystal growth processes; the analysis of this mode was first performed by

Coriell et al. Izsl Their results for Pb-Sn alloys indicate that at low growth velocities the

preferred instability is, in fact, the convective mode, which could give rise to a nonplanar

interface and certainly to a Solid of nonuniform composition. Their basic analysis was

recently improved upon, by coupling the convective flow with the morphological

instability. This was done by Coriell et al. I261and by Brattkus and Davis. [271

The convection which occurs during plane front solidification is the result of the

interaction of a thermal gradient and a solutal gradient, often deemed doubly diffusive

convection./z_l In the literature many studies have been reported on doubly diffusive

systems showing the development of different types of motions such as finger convection,

cellular convection, etc. depending upon the directions and the magnitude of thermal and

the solutal gradients; for a review see Turner. I291 The research mentioned so far
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considersthe onset of various kind of instabilities. However, the theory is not developed

well enough to predict the transitions toward the long term behavior of the system. For

example, it is observedexperimentally that during solidification of binary alloys, the

dendritic network is a common occurrence,and the theories developed for solidification

with a nominally plane front interface are not applicable to predicting convective

instabilities in dendritic alloys.

It is well understood that microsegregationof solute is coincidental with the

formation of dendrites. These effects are further coupled with convection of the

interdendritic liquid, and this results in macrosegregation. Macrosegregationcan be in

the form of a freckle or channel-segregateand can occur in a directionally solidified

casting [30]. Experimental investigations on Pb-Snand NH4C1-HzOsystemshave

revealed that the formation of the channel-segregatesis sometimesintimately related to

convection in the all-liquid zones:31'321

Hills et al: 331developed a full set of thermodynamic equations for the mushy zone.

Huppert and WorsterI341also formulated a simple mathematical model for the mushy

zone basedon the principles of global conservationrelationships. However, their model

assumesa spatially uniform and temporally constant volume fraction of solid in the

mushyzone and is not realistic for the caseof alloy solidification. In a later study,

WorsterlaSlproposed a model for the development of the mushy zone with time.

However, his model neglects convection completely, and considers only the mass and

energy equations. Other studies in the literature on the dynamic behavior of the mushy

zone include papers by Ridder et al. I9'131and Maples and Poirier. t14'211 The primary claim

of these analyses was to calculate the macrosegregation. Yeum and Poirier [361analyzed
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the problem of macrosegregationin a vertical directionally solidified ingot and showed

that even subtle temperature gradients in the radial direction can causeconsiderable

macrosegregationin Pb-Sn dendritic alloys at 1go (go = 9.8 m. s'l).

In none of the above works pertaining to dendritic solidification has the problem of

understanding the onset of thermosolutal convection in the all-liquid zone and/or the

mushy zone been attempted. Early in the grant period, a related problem of a doubly

diffusive system, wherein a porous layer underlies a pool of liquid, t371was studied.

However, in that work solidification phenomena (i.e., moving mushy zone, heat of

solidification., etc.) were not included, and the porosity of the porous layer was

considered to be constant and uniform. Furthermore, the concentration gradients were

not realistic because the advancement of the mushy zone was neglected (i.e., no

solidification).

Particularly noteworthy, in combining solidification and convective phenomena in a

unified theory, are the publications of Bennon and Incropera who formulated the

continuity, momentum, solute and energy equations for solid-liquid mixtures, tssl They

used their model to simulate convection and macrosegregation in solidifying aqueous

solutions of ammonium chloride. I39'4°1 Their computations were for horizontal

solidification and numerically revealed, for the first time, the formation of channel type

"A-segregates."

III. LINEAR STABILITY ANALYSIS OF THERMOSOLUTAL CONVECTION

We consider directional solidification against gravity, as shown in Figure 2. In

Figure 2, S denotes the all-solid zone, L is the all-liquid zone, and L+S denotes the two-
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phasedendritic region, which is usually called the mushy zone. The mushy zone is

treated as a porous medium with a variable porosity. For the nonconvecting state, we

assume that the interfaces between the S and the mushy zone and between the mushy

zone and L are planar. Gravity acts in the negative z direction.

Figure 3 illustrates the unperturbed solutal and thermal fields in the nonconvecting

state that are appropriate for the dendritic solidification of an alloy in a eutectic system.

Corresponding to Figure 2, the mushy zone extends from the eutectic isotherm (z = 0) to

the isotherm along the dendrite tips (z -- zt). With the solidification rate, V, less than

approximately 0.1 cm. s"1, which is certainly appropriate in most solidification processes

of dendritic alloys, we can ignore the effects of curvature at the dendrite tips on both the

solutal field and the thermal field in the vicinity of z ---zt. Thus, all isotherms and

isoconcentrates in the unperturbed state are horizontal. Along the isotherm at the tip of

the dendrites, the composition C t must be slightly greater than the far-field composition

C,, because there is diffusion in the liquid. Because the Lewis number "_/D, 1, the far-

field temperature 7". is beyond the scale of Figure 3 and is not shown, whereas the far-

field concentration is achieved at approximately z = z t + D/V, where D is the solute

diffusivity in the liquid and _ is the thermal diffusivity.

We also make the following assumptions that are common to the forms of the

continuity, momentum, energy, and solute conservation equations that we employ:

(1) The mushy zone moves with a constant solidification velocity V (in the z

direction), and the overall shape of the mushy zone is constant.

(2) There is no mass diffusion in the solid.

7



(3) Flow is two-dimensional.

(4) The solid and liquid phaseshave constantand equal densities,p.

A. The Conservation Equations

Because solidification is considered to be steady, we introduce a coordinate

system that moves with the solidification velocity V. The continuity equation, consistent

with assumptions (3) and (4), is

au + aw. 0 [1]
ax az

where u and w are the components of the superficial velocity in the x and z directions.

For this work, the solid is stationary, and we have selected the momentum

equation recommended by Beckermann and Viskanta, t411with the "effective viscosity"

taken to be the reference dynamic viscosity, g0, and the density of the liquid to be equal

to the reference density, p0, except for the body force for which we use the Boussinesq

approximation. With these assumptions, the components of the momentum equation are

(x momentum)

aiu _ V a____u+ 1_ [u aU +w a____u]. _ ¢ aPI. + v o
at az ep [ az jax p o ax

(z momentum)

_ u
K [2]

a__.w_w- vOW + 1_ fu aW +w aW I
a t az ¢ axt azj

¢ op + _oV2W_ _o_____w _ ¢&g
Po az K Po [3]

8



In Eqs. [2] and [3], K is the permeability, assumed to be isotropic, and _ is the

volume fraction of liquid. The reference state is the liquid at a temperature T Oand

solute concentration C o. The formulation subsumes both the Darcian and non-Darcian

(Brinkman) terms to account for the porous medium behavior over the entire range of

volume fraction of liquid within the mushy zone. It is important to note that in the

vicinity of the dendrite tips, use of the Darcian term alone would introduce serious error,

whereas by including the Brinkman term, we permit viscous shear. Note that K is a

function of ¢,[421 and K approaches infinity as _ approaches 1. The Boussinesq

approximation for the buoyancy term is included by the variable density, p, which

depends on solute concentration and temperature. Finally, v 0 is the kinematic viscosity

of the liquid at its reference state (C o, To).

For the energy equation, many additional assumptions are added to those listed

above. The added assumptions are the following:

(1) The local temperature of the solid and liquid are equal (T s = TL = T).

(2) The thermal conduction flux is given by Fourier's rate law for conduction.

(3) The thermal conductivity within the mushy zone can be represented as an

effective conductivity, _.

(4) The latent heat of fusion, L, throughout the solidification temperature range

is constant.

(5) It follows from assumption (4) that dH s = dH L = ddT, where H s and H L are

the intensive enthalpies of the dendritic solid and interdendritic liquid,

respectively, and d is the heat capacity of the mushy zone.
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With all of these assumptions, the energy equation can be written as follows:

(energy)

aT + u aT + (w - I,'r) aT _v2T L a¢ + VL a¢ [4]
at ax az d at d az

where _ = ./pod. In Eq. [4], the usual transient, advection, and conduction terms are

represented; the second term on the right-hand side accounts for the evolution of the

latent heat of fusion during solidification.

For the solute conservation equation, we use the model of Flemings and Nereo, I21

but with no solidification shrinkage and with constant density. The concentration of

solute in the interdendritic liquid is C, and it is tied to the local temperature by

equilibrium thermodynamics (i.e., the liquidus of the equilibrium phase diagram). Added

to the derivation given by Flemings and Nereo, t21 we include Fickian diffusion of solute

in the interdendritic liquid in the direction of the thermal gradient. The final form is

(solute)

aC aC aC
¢-- +um + (w - CV)-- -D

at ax, oz ' 0v2C + aC a¢ + aC a¢ ]az az ax ax

- (1 -k) a¢ +(1 -k)V aoC [51
"aT az

where D is the solute diffusivity in the liquid and k is the equilibrium partition ratio,

which is assumed to be constant.

Each of Eqs. [1] through [5] reduces to the usual form for the all-liquid zone as

¢ -, 1. Thus, we are assured of continuity between the variables in the mushy zone and

the variables in the all-liquid zone.
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This set of equations requires boundary conditions.

at z = O,

They are:

T - Te; C - Cz; u - w - 0 [6a,b,c]

at z = oo (far-field conditions),

C - (7.; T - T=; u - w - 0 [7a,b,c]

CE and Tz are concentration of solute and temperature at the eutectic isotherm,

respectively.

We now express the system of equations in perturbed variables and retain only

the linear terms. We, therefore, write

u - u,(z) + u'(x,z,t) [81

w " ws(z ) + W'(X,z,t) [9]

p - ps(z) + p'(x,z,t) [10]

C - Cs(z ) ÷ C'(x,z,t) [11]

T- Ts(z ) + T'(x,z,t) [12]

¢ - Cs(z) + ¢'(x,z,t) [131

where the subscript s indicates the variable in the non-convecting and steady state (i.e.,

the basic state), and the variables u', w',p', C', T', and ¢' are the perturbed

quantities. Ultimately, for the linear stability analysis, we solve for the perturbed

11



quantities. Of course,by representing the independent variables asEqs. [8] through [13],

it is necessaryto describe the basic state.

B. The Basic State

By definition of our basic state, us = w s --- 0, and Eqs. [2] and [3] reduce to

ops
- 0 [14]

3x

and

[15]- -pg
dz

The solute equation for the basic state comes from Eq. [5]. It is

d2G V dG 1 d_, d G (1- k)V dePs
+ + + C, - 0 [16]"

dz 2 D dz q_s dz dz qGD dz

The energy equation for the basic state is derived from Eq. [4]. For the mushy zone, it

is convenient to write it in'terms of concentration, by making use of m = dT/dC, which

is the slope of the liquidus on the equilibrium phase diagram. The result (0 <_z < zt) is

d2G V dG VL d_s
+ -I- " 0

dz 2 "_ dz m _'a dz
[17]

The terms C_ and Cs also satisfy

G(O) - cE

Cs(z,)- c,

[i8]

[19]
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and

Os(zt)- 1 [20]

Equations [16] through [20] must be solved numerically to obtain Cs(z) and ¢,s(z)

within the mushy zone. With Cs(z) known, Ts(z ) follows from the liquidus of the

equilibrium phase diagram. The value of C t is determined as part of the solution for

concentration in the all-liquid zone.

For the all-liquid zone, Cs and Ts are independent, and well-known analytical

relationships for each are available. For zt < z < ,o, Eq. [16] reduces to

d2Cs V dCs [211
_ -t- " 0

dz 2 D dz

The boundary conditions accompanying Eq. [21] are Eq. [19] and

Cs(,,o ) - C® [221

The solution satisfying Eqs. [19], [21], and [22] is

Cs - C° " exp [-C,- C. DV (z - z') ]

In order to evaluate C,, we recognize that steady state requires

[23]

[24]
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Also, (dC s/dz),,

dendrites. Then,

- G L/m, where G L is defined as the thermal gradient at the tip of the

Ct - fqa + _

DG L

mV
[25]

Thus, Cs(z ) can be determined for the entire field of 0 _<z _< ,o. Equation [25] is valid,

provided curvature effects at the dendrite tips are negligible.

The temperature in the all-liquid zone for the basic state is readily obtained from

Eq. [4]. It is

d'L v dL
+ m

dz 2 "& dz
- 0 [26]

The initial conditions for this second-order equation are

and

[27]

L(z,)- 7;,

Condition [27] is used because it is convenient to specify GL as a parameter. The

solution that satisfies Eqs. [26] through [28] is

[28]

r,-r, +o,_6 [29]

14



Thus, Ts(z ) can be determined for the entire field of 0 _<z _<0o.

C. The Perturbed Variables

In addition to the six perturbed dependent variables given in Eqs. [8] through [13],

it is convenient to define two other perturbed variables. They are

and

°-I;]K s

, [30]

[31]t

P " Ps + P

where, as before, s denotes the basic state, and the variables with primes are the

perturbed quantities. In reality, this does not add two more dependent variables to the

problem, because K --- K(¢0 and p = p(C,T).

To obtain differential equations for the perturbed quantities, the definitions given

by Eqs. [8] through [13] and [30] and [31] are substituted into the differential equations

for continuity, x and z momentum, energy, and solute conservation. For a linear stability

analysis, the inertial terms in Eqs. [2] and [3] and products of perturbed quantities are

neglected. In the usual manner, the basic state equations are subtracted from these

equations. The result of carrying out these operations gives the set of equations for the

perturbed quantities. These equations and the details of the derivation can be found in

Nandapurkar et al. [431

The far-field conditions for the perturbed variables are

[32]
T'(,o,t) - 0

15



C'(_,t) - 0 [33]

W' (oo,t) = 0W' (oo,t)
8Z

and the conditions at the eutectic isotherm are

- 0 [341

T'(O,t) - 0 [35]

C'(O,t) - 0 [36]

and

w'(_,t) = Ow' (O,t) - 0 [371
Oz

Equation [37] is applicable for relatively low volume fractions of liquid (e.g., less than

0.4) for which the permeability is quite low, so that the perturbed velocity can be

ignored.

The factor (C/K), can be evaluated for the mushy zone with a columnar dendritic

structure [421by

where d 1 is the primary dendrite arm spacing and a is a constant.

The evaluation of the perturbed density, p', is accomplished by recognizing that

p = p(C,T), so

P fl-C C ' + a_-LT
aC aT
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with

and

Op
= -PoPc

aC

a_L = -:ot_ r
aT

where/3 c and/_r are the solutal and thermal expansion coefficients, respectively.

Therefore,

p' - -po[/3 cC' + /3 T T'] [39]

Further, in the mushy zone, where T and C are linked by the equilibrium phase diagram,

rn = T'/C', and fir = Bc/m.

The perturbation equations were simplified by assuming that ¢ = ¢(z), where

¢(z) = ¢,. This makes the numerical solution more tractable, yet maintaining the

essential ingredient that the stability of the system can be evaluated by perturbing,

velocity, concentration, and temperature.

With the assumption that ¢' = 0, it is convenient to treat the all-liquid zone and

the mushy zone individually and couple them by requiring continuity of the variables and

their derivatives at z = zt (i.e., at the tip of dendrites). The set of equations for the

perturbed quantities in the all-liquid zone are simply those used for the mushy zone with

_>, = 1 and [¢/K]s = 0. Boundary conditions, at z = oo and z = 0, for the perturbed

variables are given by Eqs. [32] through [34] and Eqs. [35] through [37], respectively.
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The perturbed variables are representedin the usual manner:

w, - g'(z)e°'''°x [40]

C' " _(z)e °t÷i'°x
[41]

T' - _(z)e a'*i'' [42]

Here, a is the temporal growth rate, and w is the horizontal wave number of the

perturbation. By substituting Eqs. [40] through [42] into the conservation equations for

the perturbed variables, there results a set of equations for which eigenvalues of a satisfy

the solution. Derivations and the numerical procedures for determining the eigenvalues

are given in Nandapurkar et al. [43]

• To verify the correctness of this methodology, we used it to solve the eigenvalue

problem studied by Coriell et al. (Eqs. 62 through 66 and 70 through 78 in Reference 25)

for the case of the directional solidification of an alloy with a planar interface. We

solved their disturbance equations using our finite difference code, while Coriell et al.

used a shooting method to obtain the neutral stability curves. In addition, we solved

7

their problem by two different approaches. In one, we assumed that the principle of

exchange of stabilities holds, set o = 0 and computed C, as the eigenvalue. In the other,

we treated a as the eigenvalue and iterated on Co to obtain the onset of instability

[Re(a) = 0]. Our computed results compared well to the results of Coriell et al. I_l so we

have confidence in the numerical techniques.
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D. Marginal Stability Curves

Marginal stability curves were calculated for Pb-20 wt pct Sn alloy, for various

fractions of the gravitational constant. Results are shown in Figures 4 through 7. The

regions identified with S and U represent regions in which the basic nonconvecting states

are stable and unstable, respectively. The calculations were performed for temperature

gradients ranging between 0.5 and 100 K. cm 1.

For a gravitational constant of 1 go (go = 9.8 m. sZ), there are two branches that

define the marginal stability of the system (Figure 4). These curves do not exhibit a

region where the system is unconditionally stable for all wave numbers, so unless the

horizontal width of the container holding the solidifying alloy is quite narrow, convection

is expected. However, it would be possible to suppress convection by effecting

solidification in narrow molds. For example, with Gt. " 10 K. cm 1, the system is stable

with respect to perturbations with wavelengths less than 0.066 cm. Thus, in molds f

widths less than approximately 0.66 mm, there would be no convection during

solidification.

Figure 5 gives the marginal stability curves for the gravitational constant of 0.5 go.

Although the nature of the curves here is qualitatively similar to that at 1 go, it is quite

clear that the region of instability is compressed, as expected. The calculations indicate

that for this situation, the system would be convectively stable in molds of widths less

than 0.95 mm for a temperature gradient of 10 K. cm 1.

The marginal stability curves change dramatically with a further reduction in the

gravitational constant. With the gravitational constant equal to 0.1 go (Figure 6), the

system is not unconditionally stable for any specific value of the thermal gradient. But

19



solidification in wider molds can be accomplishedwithout convection. For example, for

a gradient of 2 K. cm1, and in molds less than 0.4-cmwide, solidification without

convection is predicted. Also, for gradientsgreater than about 2.5 K. m1, the systemis

alwaysstable convectively.

When the gravitational constant is 10 -2 go, the system exhibits two branches

(Figure 7). The marginal stability branch, drawn with the solid curve, is for stationary

convection; the region to the left of the broken curve is unstable with respect to

oscillatory convection. At the reduced level of the gravitational constant, the system is

stable provided GL > 0.75 K. cm 1 and the wave numbers are greater than approximately

3.0 cm 1. Thus, no convection is predicted for solidification in molds less than 2.0 cm in

width at 10z go for all gradients greater than 0.75 K-cm _. It should be mentioned here

that when the wave numbers are sufficiently small, the wavelength of the perturbation

(x = 2n'/o_ _ z) has the same order of magnitude as the dimension of the domain, and

the assumption of infinitesimality of the perturbations does not hold.

Finally, the linear stability calculations for a gravitational constant of 10 .4 go

showed that the system is stable for all wave numbers, at least for the range of thermal

gradients analyzed (viz., Gt. -> 2.5 K. cml).

E. Discussion

When analyzing the stability of a solidifying dendritic alloy, the interaction of the

convection in the all-liquid zone and the convection in the mushy zone must be

considered. The analysis of the stability of such an interaction, however, appears to be

quite complex, in that the marginal stability curves exhibit no minima which would define
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conditions for which the systemis unconditionally stable. Further, if an attempt is made

to describe the stability of the systemin terms of the usual thermal and solutal Rayleigh

numbers, it becomesapparent that thesedimensionlessparameters are not independent.

Thus, one cannot impose a constant stabilizing thermal Rayleigh number and study the

stability of the systemas a function of a destabilizing solutal Rayleigh number.

Unfortunately, this limits the utility of our results to the specific casesconsideredherein.

Of course, the samemethodology could be applied to other alloys and solidification

conditions.

Despite the complex interaction in solidifying dendritic alloys, the conditions for

marginal stability can be studied in terms of dimensional variables. Suchanalysesare

particularly useful in suggestinglateral dimensionsof the container that can be used to

suppressconvection at various values of the gravitational constant. Of course, the system

studied herein wasunbounded laterally, so it could be argued that the linear stability

analysisdoes not define lateral dimensionsto suppressconvection. This is true in a

precise sense;nevertheless,nonlinear calculations of the convectingsystemconfirm the

predictions of the linear stability analyses,t491Furthermore, as mentioned by McFadden

et al.,t_l the inclusion of the effect of sidewalls in the linear stability analysis for

thermosolutal convection would make the solution to the problem "intractable, if not

impossible." However, Guerin et al. t441state that for the modified problem of predicting

the onset of convection during directional solidification with a planar interface, the

presence of the sidewalls is stabilizing. On the basis of their work, we believe that our

computed results for the onset of convection are conservative (i.e., when our analysis
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predicts a motionlessstate, sidewallswould make the systemeven more stable with

respect to convection).

One assumption in our analysisis that the density of the solid equals that of the

liquid. With unequal densities, there would be a flow toward or awayfrom the solid-

melt interface. In other words, the basic statewould not be motionless,with us = 0 and

w s = -cV, where c is the shrinkage. However, because the value of c is small,

approximately 0.04 for the Pb-Sn alloys analyzed herein, the results would not be

significantly affected by relaxing this particular assumption.

Finally, it should be repeated that the volume fraction of liquid, ¢, has not been

perturbed. In a linear analysis, we believe that this is not necessary and is analogous to

decoupling the morphological stability of the interface from the convective instabilities

that can occur in solidification with a planar interface.

IV. ANALYSIS OF NONLINEAR CONVECTION

In the previouschapter,the thermosolutalconvectionwas analyzed interms of its

linear stability. In this chapter, the same type of a system is formulated using

dimensionless variables, and the supercritical convection is calculated.

It is important to note that the present nonlinear analysis does not permit the

volume fraction of liquid in the mushy zone to deviate from its distribution determined

for the nonconvecting and steady state. While this is a reasonable assumption to make

for convection near the critical state, and it permits a prediction of the conditions in

which thermosolutal convection is expected, such an assumption probably does not allow

an investigation of the supercritical stage of convection that leads to the formation of
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localized segregatesthat are sometimescalled "channel segregates"or "freckles.''I451In

future work, we intend to model the supercritical convection and the formation of

channel segregatesby relaxing the assumptionthat the volume fraction of liquid in the

mushy zone does not vary with time.

A. Dimensionless Conservation Equations

The physical situation is illustrated by Figure 2. We assume that a binary alloy

solidifies vertically in a two-dimensional strip of width W. The coordinate system is

located at z - 0 and moves upward at the constant solidification velocity, V.

In the previous chapter, all of the major assumptions are listed. The dimensional

conservations equations, written for the moving coordinate system are given by Eqs. [1]

through [5]. We now rewrite Eqs. [1] through [5] with nondimensional quantities.

(1) The thermal Rayleigh number is

Ra T -

gB rGt, H 4

vo_

where GL is the specified initial thermal gradient at the tip of the dendrites

and H is a characteristic length. For these nonlinear calculations, we have

selected H = zt, the height of the mushy zone.
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(2) The solutal Rayleigh number is

ga C -
gB cC,,H 3

voD

(3)

where (7. is the concentration of solute in the bulk liquid.

The Prandtl number is

Pr - vol Z,

(4) The Schrnidt number is

S¢ - 11o/0

(5) The Darcy number is

(6) The reference velocity is

Da - K/H 2

U= (g B rGLH2) x/2

(7) The nondimensional interface velocity is

_'- v/u

The momentum diffusion time scale

n 2

Po
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hasbeen chosenbecauseit lies between the temperature and solute diffusion time scales.

The temperature and solute concentrations are nondimensionalized according to

and

T
T' - To

GLH

C' - C_,.
C-

c.

respectively, where the prime denotes a dimensional quantity and T O is the liquidus

temperature of the alloy with concentration (7.. For reference pressure, we choose

P - p 0H2/'1.2

Finally, the nondimen_sional components of velocity are

u - u'/U and w - w'/U

The nondimensional coordinates are

x - x'/H and z - z'/H

Nondimensional time is

t - tt/7

And nondimensional pressure is

p -p,/P
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Notice that in the definition of the nondimensional pressure, a dimensional

pressure p* is introduced. The dimensional pressure gradient in Eqs. [1] and [2] is

written as vp' = vps + vp*, where vps = -p_g, so thatp* satisfies vp* = vp" + Pog.

Because the equations in the mushy zone reduce to the equations in the liquid

when _ = 1, the whole system can be described by one set of equations. In

nondimensional form, Eqs. [1] through [5] become

au 3w
-- + -- " 0

3x 3Z

[43]

au
-- +

at

R )1/2

l-_-j - 7_ +--,0x --q_ Pr] 1/2 op + vZu _ _u [441

arJ ax Da

3w
-- +

3t

' "11/2

a_/ 0w
¢ )1/2

ow]. __ler /
aP + v_w _ _£_¢w
az Da

+¢

R )1/2

t_j
Ra ¢PrC

+

RarSc

[45]

aT

3t

( )1/2

[_rJ ox
1 v2T+

Pr

R ",11/2

a_/ IgL dq_

dGLH dz

[46]
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f )1/2

I o,/ [ oco_+L-:;_j U--ox ) I° "°]oC 1 v2C 4- oC

+ (w- _,_')-_z " _ az

i _1/2

Rarl

WJ
IY(1- k) do (1 + C)

-&-
[47]

B. The Initial State

We assume that initially there is no convection and that, in the mushy zone,

Eqs. [16] through [20] of Nandapurkar et al. 1431describe C, T, and ¢. The nonconvecting

state is specified by inputting, G L, V, and C,, with

and

¢(x,z,,0) - 1

_(x,O,O)> o

T'(x,O,O) - T'e

In addition to obtaining C, T, and _ in the nonconvecting mushy zone, the position of the

dendrite tips, zt, is also obtained as part of the solution.

The characteristic length, H, is made equal to z,, and the height of the all-liquid

zone is also made equal to H = zt. The temperature at the top of the all-liquid zone

simply becomes

T' - T" + Gt.HH t
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where T' t is the temperature at the dendrite tips. Thus, within the numerical domain,

the temperature gradient in the liquid of the initial state is assumed to be linear. Notice

that this initial state does not exactly match the steady-state thermal field, which is

strictly obtainable only for an all-liquid zone of infinite height. Because we seek a

nonlinear calculation for T, C, u, and w, it is not necessary that the initial state must

match a steady state. However, we choose the values of C, T, and ¢ that rigorously

match a steady state for the initial condition of the mushy zone.

C. Boundary Conditions

The domain is made finite by means of an artificial top boundary at

z" = z t + H = 2H and by considering only the region 0 _<z < 2H.

The boundary condition associated with Eqs. [24] through [27] are as follows:

(1) No slip condition on velocities along the two vertical walls and the bottom

boundary.

(2) No surface tractions at the top open boundary z' = 2H.

0"olI "- 0

where n is the unit normal vector pointing outward from the boundary

surface.

(3) Adiabatic vertical walls.
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(4) Prescribed temperatures at bottom and top boundaries (with zt = H):

T(x, O,t ) - Te - T° and T(x,2H, t ) - Tt -To + 1
GLH GLH

(5) No solute flux at the vertical and bottom boundaries.

(6) At the top boundary, the solute must balance the concentration C,_ outside,

viz., at the top boundary,

1 aC

Sc Oz

(7) At the bottom, z = 0,

D. Calculated Results for Nonlinear Convection

The numerical model uses a finite-element code that is described in Heinrich M6I

and Heinrich and Yu. [471 The detailed aspects of the method pertaining to a related

solidification process can be found in Heinrich, [4sland the strategy for selecting a

nonuniform nodal spacing in the z-direction can be found in Heinrich et al. t491

Calculations were performed for lead-tin systems under a variety of conditions.

All calculations were started by introducing a random perturbation in the initial solutal

field at the nodal points of the form

C(x,z,O) .. Co(z)(1 + O.OOSr)
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where Co(z ) is the solutal concentration of the initial state and -1 < r _< 1, with r taken

from a random number generator.

First we discuss the results of nonlinear calculations for the Pb-20 wt pct Sn alloy.

Table I shows the different cases considered and the results of the linear stability

analysis. The solidification velocity is 7.2 cm. h-1 (2 x 10-3 cm. s1) in all cases, and the

upper boundary was chosen at z' = 2H.

Table I. Calculations for Pb-20 Wt Pct Sn

Calc.

No.

1

2

3
4

5

6

7

Reference

Thermal

Gradient

GL (K'cm -1)

8O

8O

2.5

2.5

2.5

2.5

2.5

g/go
(go = 980 cm.s "2)

1
10-4

1
10-1

10-2

10-4

1

Container
Width

(cm)

1.24

1.24

3.46
3.46

3.46

3.46
0.10

Linear

Stability

unstable

stable

unstable
unstable

unstable

stable

stable

In the case of G L = 80 K. cm -I, the depth of the dendritic region was found to be

1.24 cm, and when the gravitational constant is go = 980 cm. s-2, the non-dimensional

parameters are Rar = 4.24 x 104, Ra c = 2.33 x 10 7, Dr = 1.58 x 10 "2, Sc = 91.0, and

Da = 6.15 x 10"8¢3/(1 - ¢).

All of our nonlinear calculations agree with the linear stability results in the sense

that when the stability analysis predicts an unstable case, convection develops in the

nonlinear system, and when a stable system is predicted, the perturbations die out in the
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nonlinear model. In Figure 8, the results for calculations 1 after 114 seconds are shown.

It can be observed that convection is very weak in the all-liquid region, and there is

essentially no convection in the mushy zone. In fact, the permeabilities used in these

calculations yield almost no convection in the mushy zone in all cases.

In the case Gz. = 2.5 K. cm 1, a depth of 17.3 cm results for the mushy zone, and

at normal gravity conditions, the nondimensional parameters are Rar = 4.97 x 107,

Rac = 6.28 x 101°, Da = 2.75 x 10:9¢3/(1 - _) with the same values as before for the

Prandtl and Schmidt numbers. Results at t = 1080 s for calculations 3 and 5 in Table I

are shown in Figures 9 and 10, respectively. As expected, much weaker convection is

observed in Figure 10 and Figure 9 because of the reduced value of g. It can be

observed that the convection cells in Figure 9 are much longer than those in Figure 8

because of the weaker stabilizing temperature gradient. These calctilations show the

expected results as predicted by the linear stability analysis of Nandapurkar et al. I431

However, these cases show no convection in the mushy zone and hardly any effect of

thermosolutal convection in the conditions at the dendrite tips. We should point out that

the linear stability calculations were done for laterally unbounded systems I431and for

values of g sufficiently high to cause convection. The systems were never found to be

stable unconditionally for all wavelengths. Therefore, we have assumed that a system is

stable provided that the linear analysis predicts stability for wavelengths equal to or

greater than the width of the container.

Another series of calculations was performed for a Pb-10 wt pct Sn alloy at

Gt. = 50 K. cm "1 and a lower solidification velocity of 2.5 cm. h-_ (approximately

7 x 10-4 cm. sX). These are summarized in Table II.
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Table II. Calculations for Pb-lO Wt Pct Sn

Calculation
Number

8

9

10

11

12

13

14

Container Width

(H -- 2.4 cm)

H

2H

1t/2

1t/4

H/8
H/16

H

g/go
(go = 980 cm.s -2)

1

1

1

1

1

1

10-4

Linear

Stability _SJ

unstable

unstable
unstable

unstable
unstable

stable
stable

The results for calculations 8 through 12 confirmed that the size of the convection

cells was independent of the width of the container. The depth of the mushy zone was

H = 2.4 cm, and the top boundary was chosen at z -- 2H. The parameters for these

calculations, when the gravitational constant is go, are Rar = 6.15 x 10s, Ra c = 9.49

X 10 7, Pr = 1.96 x 10-2, Sc = 82.3, and Da = 3.947 x 10"7_3/(1 - 4).

Results for calculation 8 in Table II are shown in Figure 11 at t = 700 s. It can

be observed that, in this case, there is significant convection in the upper part of the

mushy zone, and convection produces a strong disturbance in the concentration field at

the tip of the dendrites. The temperature field remains virtually undisturbed. Note that

dimensionless temperature is defined differently and given in the caption. Figure 12

shows a magnification close to the dendrite tips at 1887 seconds. A better organized cell

system can be observed at this later time, and the effect of convection in the upper part

of the dendrite region is evident. The temperature field has been magnified 100 times

and shows how weakly it is affected by convection due to the very low Prandtl number.

In all calculations performed so far, using values generally accepted for the Darcy
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number, convection in the mushyzone is only significant in the upper 20 pct of the

dendrite region, if there is any convection at all. Furthermore, as can be observed in

Figure 12(a), convection in the mushy zone is almost entirely driven by convection in the

all-liquid region. This is more clearly illustrated by calculation 12 in Table//, for which

the detail of the flow in the vicinity of the dendrite tips is depicted in Figure 13 at

1890 seconds. In all these figures, we should keep in mind that the streamline patterns

obtained are not unique; they depend on the initial perturbations, and, hence, only the

qualitative features of the flows are significant.

Further computations have been performed for this system for the parameters of

calculation 8 in Table II but with the gravitational vector oriented slightly off the

negative vertical direction. Results show that very small deviations off the vertical

direction produce a system entirely dominated by natural convection. The effect of both

thermosolutal and natural convection could only be observed for deviations of up to

0.01 deg off the vertical direction. For a slightly larger angle of 0.05 deg, natural

convection completely dominated the flow. These results have been reported

elsewhere.[5°l

E. Discussion

Under the simplifying assumptions of steady-state solidification and that the tips

of the dendrites describe a plane undeformable surface that advances at a constant

velocity, nonlinear calculations of thermosolutal convection during vertical solidification

of dendritic alloys have been performed. The model is an extension of the plane-front

model analyzed by Coriell et al.lZSl and McFadden et al. [511to include a dendritic zone.
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The analysisshowssignificant differenceswhen comparedwith the plane-front interface

models, becauseof the presenceof the mushyzone, in that the systems can be stable for

higher solutaI concentration values and were stable for all cases studied at a reduced

gravity of 10-4go. This suggests that the plane-front model is not relevant to

solidification in the presence of a mushy zone.

The nonlinear calculations are in full agreement with the linear stability analysis

presented in Nandapurkar et aI. f431and show that the presence of the mushy zone can

have a stabilizing effect and suppress convection under'low gravity conditions or when

the lateral dimensions of the container are properly chosen. When the system is

unstable, "fingerlike" convection develops in the all-liquid region that can entrain the

interdendritic liquid in the mushy zone and significantly affect the solute concentration in

the neighborhood of the tips of the dendrites. Furthermore, the calculated convection in

the mushy zone under these conditions is always weak and very sensitive to the choice of

the permeability function. For the permeability models used in this work, convection in

the mushy zone never reached further than the upper 20 pct of the mushy zone and

appeared to be driven mainly by convection in th e all-liquid region.

It was also concluded that at gravity levels of 10-4 go, the Pb-Sn alloys considered

were always stable to thermosolutal convection; moreover, when gravity is not acting

exactly vertically, the presence of natural convection fully dominates the dynamics of the

flow, under the conditions of this model.

The model presented here is only valid at the onset of convection. After some

time, constitutional equilibrium is not satisfied, because it is assumed that the

distribution of the volume fraction liquid remains constant with time. For this reason,
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calculations have been performed for a short time after the onset of convection that

describe the main qualitative features of the dynamics of the flow in the vicinity of the

dendrite tips. Extension of the present model to relax the condition--that the volumetric

fraction of interdendritic liquid in the mushy zone is constant--is currently being pursued

with the expectation that it will allow us to model the severe localized segregates in

which remelting must take place, known as "channel segregates" or "freckles."

V. OTHER ACCOMPLISHMENTS

The major emphasis of the research was to model thermosolutal convection

during solidification of dendritic alloys, and the results of this effort are given in

Chapters III and IV. In this chapter, we summarize several other tasks of the subject

research. For the sake of brevity details are not given here, but the many publications

resulting from the work may be consulted. [37"_2"691

A. Thermal and Salt-Finger Convection in Superposed Fluid and Porous Layers

When a fluid layer is overlying a porous layer, and fluid in both layers participate

in the convection process, the nature and characteristics of the convection are quite

different from those occurring in each layer separately. In directional solidification of

binary alloys, there is a mushy zone between the solid region and the all-liquid zone.

Then convection involves both the mushy zone and the all-liquid zone. Of course, in this

instance, an additional important constraint is the thermodynamics of the phase change

occurring in the mushy zone. However, in this part of our investigation, we assumed that
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the solid matrix in the mushy zone is inert (i.e., there is no solidification). In this

manner, rather general results can be obtained based on a small set of parameters.

We made a linear stability analysis of the onset of thermal and salt-fingering

convection in the superposed layers. The results show that the presence of the fluid

layer drastically alters the onset conditions for convection, f37"521When the thickness of

the fluid layer is larger than approximately 15% of the porous layer thickness, convection

is dominated by the fluid layer. When the fluid layer thickness is smaller than 15% of

the porous layer thickness, convection is dominated by the porous layer. The sizes of

convection cells in these two cases are drastically different. The prediction of the

stability theory was confirmed by experiment for the thermal convection case. [531

A nonlinear computation was carried out by Dr. Falin Chen, as part of his Ph.D.

dissertation, f_l The results show that heat transfer is greatly enhanced as the Rayleigh

number is increased when convection is porous layer dominated. When the convection is

dominated by the fluid layer, the increase of heat transfer with increasing Rayleigh

number is rather minimal. Calculations were carried out into the super critical regime

up to 20 times the critical Rayleigh number. The convection remains steady, and

oscillations were observed.

In directional solidification, the solid in the mushy zone is columnar-dendritic,

so that the mushy zone is a porous medium with anisotropic properties, especially

in permeability and in heat conductivity. We have recently concluded a linear stability

analysis of onset of thermal convection in a superposed fluid and anisotropic porous

layers, and a paper entitled "Convective Instability in Superposed Fluid and
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Anisotropic Porous Layers" by F. Chen and C. F. Chen hasbeen submitted to Physics of

Fluids. The abstract of the paper is presented below.

'qhe onset of thermal convection due to heating from below in a combined

system consisting of a fluid layer overlying a porous layer whose permeability and

thermal diffusivity may be anisotropic is studied. The flow in the porous medium is

assumed to be governed by the Darcy equation, and the Beavers-Joseph condition is

applied at the interface between the fluid and porous layers. The linearized stability

equations, together with the boundary conditions, are solved by a hybrid Adams and

backward difference method. The numerical scheme is first tested for the ease in which

the depth ratio _" = 10 a, where _"is the ratio of the thickness of the fluid layer to that of

the porous layer. The results agree with an exact solution for a pure porous layer to

three sigfiificant figures. Numerical results have been obtained to study the effect of the

depth ratio _', the degree of anisotropy in permeability _"(-- the ratio of the permeability

in the horizontal direction to that in the vertical direction), and the degree of anisotropy

in thermal diffusivity _'T ( = the ratio of thermal diffusivity in the horizontal direction to

that in the vertical direction) on the onset of thermal convection. It is found that

anisotropy of the porous medium has the most profound effect on the onset of thermal

convection when the depth ratio is small. At _" = 0.1, the critical Rayleigh number

increases as _"is decreased from 1.0 to 0.1 at a given value of _'T- This is in accordance

with the _" = 0 case. However, when _"is decreased beyond the critical value of 0.06, the

critical Rayleigh number decreases with decreasing _"and there is a sudden increase in

the critical wavenumber am. This sudden change is the result of switching from

convection dominated by the porous layer to that dominated by the fluid layer. This
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result is illustrated by streamline plots of the pertinent case. For depth ratios f >_0.2,

convection is confined within the fluid layer at onset so that the effect of anisotropy

becomes less important as the depth ratio is increased."

B. Experimental Study of Directional Solidification of Aqueous Ammonium Chloride
Solutions

Systematic experiments on directional solidification of NH4CI-H20 solutions were

carried out to provide ground-based support for the flight experiment "Casting and

Solidification Technology" CAST with principal investigators M. H. McCay and T. D.

McCay of UTSI. A detailed examination of the onset of plume convection in the mushy

layer was made by varying the bottom temperature of the tank, in which the solution

solidified. The results are reported in a paper entitled "Experimental Study of

Directional Solidification of Aqueous Ammonium Chloride Solutions" by C. F. Chen and

F. Chen, which has been submitted to the Journal of Fluid Mechanics. The abstract for

this paper is presented below.

"Directional solidification experiments have been carried out using the analog

casting system of NH4C1-H20 solution by cooling it from below with a constant

temperature surface ranging from -31.5 "C to + 11.9 ° C. The NH4CI concentration was

26% in all solutions, with a liquidus temperature of 15 °C. It was found that finger

convection occurred in the fluid region right above the mushy layer in all experiments.

Plume convection with associated chimneys in the mush occurred in experiments with

bottom temperatures as high as + 11.0 °C. However, when the bottom temperature was

raised to + 11.9 ° C, no plume convection was observed, although finger convection was

carrying on as usual. A method has been devised to determine the porosity of the mush
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by'comptited tomogralshy. Using the mean Valueof the porosity across the mush layer

and ti_e petmeabiiffy calculated by the Kozeny-Carman relationship, the _:ritical solute

Rayleigh number across the mush layer for onset of plume convection w_iS estimated to

be between 200 and 250"_

' ' .... .k .... "

C: DoubleLDiffusi(_e Convection under Reduced Gravity

- : In a paper to appear, issl we reported on the effect of l:educed gravity on all forms

Of double-diffusive Convection. Using property values of lead-tin alloys, it is concluded

that diffusive instability,'whether due to sideways heating or bottom heating, isnot likely

to occur at reduced gravity levels of 10-2 to 10-4go, where go is the gravitational

acceleration at sea level. Salt-finger convection, however, is likely to be generated at

much reduced gravity levels. This is because the destabilizing effect of the concentration

gradient is amplified by the Lewis number (the ration of thermal diffusivity to solute

diffusivity). This has been discussed in depth in a recent AIAA paper. 1561There is a

possibility of interaction between salt-finger convection and convection due to surface

tension gradients when material processing is being carried out in space. Further studies

need to be carried out (a) to delineate the parameter range in which such combined

instability may occur and (b) to determine the nature of such convection motions.

D. Formation of Microporosity during Dendritic Solidification

A model for the formation of microporosity was included because it is based

largely on the description of solute redistribution in the mushy zone that is one of the

important facets in our models. Porosity is a defect faced by casting engineers, so it was
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felt that our contribution could be useful to the casting community. The transfer of

these results was by seminar presentations at an industrial laboratory and a university,

talks at three conferences, and four publications. [57-6°1

Early in the program AI-4.5 wt pct Cu alloy was chosen as a sample alloy.

Calculations were done for various concentrations of dissolved hydrogen. By calculating

the partitioning of both hydrogen and copper between the solid and liquid phases in the

mushy-zone, the concentration of dissolved hydrogen in the interdendritic liquid during

solidification could be calculated. In turn, this concentration is used to determine the

pressure of hydrogen gas in the interdendritic liquid according to the following reaction:

2 H - H2(g )

where the underline represents hydrogen in the dissolved state. The equilibrium .

constant K for the above reaction is

where

A.Iso

where

g- [481

Ps = pressure of H2, and

Cn = concentration of dissolved H in the interdendritic liquid.

K- K(T, Cc,,) [49]

T -- temperature, and

Co,, - concentration of copper in the interdendritic liquid.
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C,q, Ccu and T throughout the mushy zone are calculated during solidification, so

that Pg can be estimated via Eqs. [2] and [3]. Finally, with a knowledge of the surface

tension (liquid/vapor interface) of the alloy and space available for potential gas-bubbles

within the interdendritic liquid, the code can be used to predict the formation of

interdendritic porosity, and ultimately the volume fraction of interdendritic porosity after

solidification is complete.

The procedure, briefly described above, was included in the computer-code and

used to make a number of calculations for the volume fraction of interdendritic porosity.

Calculated results agreed favorably with data found in the literature. Is7_sl

E. Transport and Thermodynamic Properties

Another important task was to select and organize data for the various

quantitative models. In particular, data for the densities of the dendritic solid and

interdendritic liquid, as well as the densities of the eutectic-solid and eutectic-liquid, have

been reviewed and carefully extrapolated to the solidification temperature range of

Pb-Sn alloys [6:1and aluminum-rich A1-Cu alloys, f621 We also did a careful evaluation of

the enthalpies of the phases during solidification of Pb-Sn alloys, t63! For the model which

predicts porosity, a simplified theory for the surface tension of melts of binary alloys was

developed, [64_1 which was very useful in extrapolating the surface tension data to the

solidification range. Finally, because of our treatment of enthalpy during solidification,

we discovered that the heat of mixing effect in alloys can be important in modelling

solidification phenomena. In this regard, a paper pertaining to directional dendritic

solidification :671and another on morphological stability I681were published.
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In connection with separatelysupportedwork on the solidification of binary alloys,

we estimated the temperature and composition dependenceof the viscosity for A1-Cu

alloys,I691using a relationship basedon Andrade's viscosityequation.
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Fig. 1--Interdendritic fluid flow and macrosegregation in an ingot of Sn-15 wt pct Pb.

(a) liquidus and solidus isotherms; (b) flow lines of interdendritic liquid,

(c) macrosegregation. From Kou et al. R
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